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Optical properties studied using linear muffin-tin orbital 
theory 
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Abstract. A new method is presented for calculating optical propertres witiun the framework of 
the self-consistent linear muffin-tin orbital (WO) band-rrmcture theory. We show how Green's 
second identity along with the commutation relation between the position and Hamiltonian 
operators may be used to calculate. independently of the gauge. the velocity matrix elements 
required for optical propettiies. The method has been applied to calculate the imaginary part of 
the dielectric function C I ( E )  for FeSi and Si Notably. the new expressions for matrix elements 
are also valid for Hamiltonians in which non-local potentials me Included. 

1. Introduction 

In recent years a number of methods have been proposed for calculating optical properties 
within the framework of LMTO theory [l-31. It has been shown that the optical properties 
of both metals [ 1, 21 and semiconducting materials [4, 51 may be calculated, Uspenski et 
al [ l ]  proposed a method for the accurate calculation of the optical matrix elements based 
on the continuity equation for the charge-density operator. They were able to show that 
the same accuracy as in band-structure calculations could be achieved for the optical matrix 
element?.. This was done by including the combined correction term to compensate for 
inaccuracies in the wavefunction due to the basis set in LMTO theory being finite. Their 
method was applied to calculate the optical spectra of the metals Cu and Pb showing good 
agreement with experimental values. These corrections were incorporated by Alouani et 
a/ [2, 41 and they have shown how satisfactory optical spectra can be obtained for AI 
and Fe in the low-energy range, i.e. less than 5 eV. Subsequently they have applied their 
method to calculate the optical properties of various semiconducting materials [4], namely 
Ge, GaAs, InSb and CdTe. They have also used their method to investigate the hydrostatic 
pressure dependence of the dielectric functions of Ge and GaAs. Another similar approach 
to determining the optical properties within the LMX) formalism has been given by Zemach 
er a[ [3]. They showed that the matrix elements may be evaluated using a spherical wave 
expansion and Racah algebra [6]. Subsequently they have applied their method to calculate 
the optical properties of trans-polyacetylene [5]. 

In all of the above calculations however, the gradient operator has been employed 
for the determination of the momentum matrix. In this paper we shall show how the 
momentum matrix may be constructed using a gauge-independent formalism which avoids 
the determination of the gradient operator and allows for the inclusion of non-local potentials 
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in the Hamiltonian. In our method we have employed Green's second identity and the 
communtation relation between the position and Hamiltonian operators. We then show how 
the momentum matrices may be written in terms of a sum over Gaunt coefficients [6] and 
potential parameters which are defined witbin the LMTO method [7, 81. The optical spectrum 
is then evaluated by linear extrapolation [9] on a mesh of k-points in the irreducible wedge 
of the Brillouin zone using the tetrahedron method [ 10, 111. We have linearly interpolated 
both the eigenvalues and the momentum matrix elements between mesh points on a given 
tetrahedra [I l l .  In order to demonstrate the validity of our method we have applied it to 
calculate the imaginary part of the dielectric function for FeSi and Si. The results obtained 
show good agreement with other calculations [4, 121 and experiment [13]. 

2. Optically induced transitions 

Jn order to study the effect of a radiation field on the electronic states of a solid, one must 
determine the total energy involved which is described mathematically by the Hamiltonian 
of the system. The Hamiltonian is given as the sum of the kinetic, HKE, and potential, Hpe, 
energies of a system of N electrons and the energy of interaction, Hint, of the system with 
the perturbing electromagnetic field, i.e. 

where e is the absolute value of the electron charge and A is the vector potential of the 
electromagnetic field. Using the normal Coulomb gauge V . A(q,  t )  = 0 it may be shown 
[I51 that the interaction Hamiltonian, neglecting squared terms in the vector potential, is 
given by [14] 

Within the standard quantum mechanical treatment, the effects of an electromagnetic field 
on the electronic states are studied using Hi,, as a time-dependent perturbation which 
causes electrons to make transitions between the energy bands. By using time-dependent 
perturbation theory one obtains the rate at which these transitions occur which may then 
be related to the standard optical response functions in crystals [15]. The absorption of 
radiation in solids is described by the absorption coefficient for cubic systems 

The imaginary part of the dielectric function may be related to this using the simple formula 

and hence 

One can see from this formula that at high-symmetry points and for allowed transitions, 
the optical properties can be described in terms of a contribution from the strength of the 
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matrix elements calculated at the high-symmetry points and a contribution from pairs of 
bands ( l / E z ) J c v ( E ) ,  where &,(E) is the joint density of states defined as 

and is the density of pairs of states, one in the valence band, labelled v, and the other in 
the conduction band, labelled c. All over the energy range one has to calculate directly 
expression (5) and take into account the k-dependence of the matrix elements. 

FeSi - Energy Bands and Total Density of States 

-10 

-12 

-14 

M T R  A ~ A X Z M  r ~ D . o . s .  
Figure 1. Electronic band smcntre of FeSi shown with the corresponding density of States. 

3. The momentum matrix 

In this section we will show how the optical matrix elements, and therefore the optical 
properties of solids, may be calculated within the framework of the self-consistent linear 
muffin-tin orbital band-structure method. As a starting point the momentum operator may 
be defined within the gauge-independent formalism by the commutation relation 

where v = _IT, HI. (7) 

Next we need to determine the one-electron wavefunction which has been defined within 
LMTO theory 17, 81. This is achieved by using the variational principle for Schrodinger's 
equation with energy-independent basis functions which reduces the secular equations to 
those of a linear eigenvalue problem. The LMTO eigenvalue equation 

(8) 

is then solved numerically to obtain the eigenvalues Ejk  at all required k-points and the 
corresponding eigenvectors @. The index L refers to the quantum numbers 1 and m and 

1 
fi 

P = m,v 

C(HEL - EjkOk L , L ) ~ L  j k  - - 0 
L 
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Si - Energy Bands and Total Density of States 

P 
a, c 
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Figure 2 Electronic band smcturc of Si shown with the corresponding drnsily of slmes. 

also to each sphere q in the unit cell, i.e. L =? q l m .  The type of sphere f is then defined 
as a function of q. Using this we can construct the wavefunction corresponding to the j t h  
eigenvalue at IC as a linear combination of the muffin-tin orbitals 

(9) 

where *ik(r) is the L-decomposed wavefunction and xf(r) are the muffin-tin orbitals, 
defined in terms of potential parameters and canonical structure constants. By choosing some 
energy E",( and assuming an energy-independent basis set, in the energy range surrounding 
E,,I, we can write 

urj% = urLk(?-) \vi%) = CYL j k  xL(r) k 

L 

@ d r )  = @ ~ E ~ ~ I ~ T ) .  (10) 
This is the normalized solution of the radial Schrodinger equation for the potential u(r) and 
its energy derivative is defined by 

The radial derivatives of these functions are defined in terms of the corresponding radial 
logarithmic derivatives at the sphere boundaries: 

( 12) 
1 1 .  

@Lr(Sr) -@ui!(St)Dw~ 
S, 

By using a linear combination of the energy-independent basis functions the L-decomposed 
wavefunction can be written as 

d,'(Sd = -@"dsz)@'tf. s, 

@(r)  = A ~ ~ @ , L ( T )  + B ~ ~ & ( T ) .  (13) 
The coefficients A and B are also defined in terms of the potential parameters and the 
canonical swucture constants 181. The partial wave and its energy derivative are defined in 
terms of the energy-independent basis set 

@"L(T)  = i'y,"YWutr(r) (14) 
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= i’Tm(%,t(r). 
The optical matrix elements are then given by 

Let us now expand the optical matrix elements in terms of the L-decomposed wave function 

( qfk  I p 1 q j k )  = E( A { F @ v ~ * ( ~ )  + B?$,L#(T) I w I A i k @ , ~ ( r )  + B L k & ( ~ ) ) .  (17) 

After multiplication one obtains four separate terms which can be computed individually: 
( i ’k  p q i k )  

L’L 

* I 1  
= me C 4 k ’ . $ (  @,A-) I w I @)vL (T) ) 

L’L 

+me E B ~ * E ~ ~ ( & , ( T )  I w I &(T) ). (18) 
L’L 

We shall now consider the velocity mabix elements in this expression in detail. 
By using the definitions of the partial wave and its energy derivative along with 

Green’s second identity and the commutation relation between the position and Hamiltonian 
operators we shall show that the above relation may be solved in terms of potential 
parameters and Gaunt coefficients. So taking the first velocity matrix term 

1 
(@”L’(T) lv lI”L.(T))=  , ( @ ” L . ( T ) I [ T , H l  I @ ” L ( P ) )  

(19) 

H @ ” L ( T )  = €”,f@”L(T) (20) 

H & ( r )  = @”L(T) + E d ” L ( T )  (21) 
the first integral term in (19) may be expanded using the definition of the partial wave and 
its energy derivative, equations (14) and ( 1 3 ,  giving 

ifr ‘ S  = f /@:L1(T)TX$.L(T)d 3 r - - @ : E ( r ) H ~ @ u ~ ( ~ ) d 3 r .  

Now using 

and 

where G is defined in terms of the product of three spherical harmonics, (see appendix 1): 

+[/ Y;.‘.YpY;.d+] 
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and the position vectors I. y. L are the unit vectors of the Cartesian coordinate system, 
defined such that 

The second integral term of expression (19) can be evaluated by using Green's second 
identity 1161: 

We have taken F,(r) equal to the alpha component of T + ~ L ( T ) .  By rearranging Green's 
second identity and again expanding in terms of the partial wave and its energy derivative 
we can see that the second term reduces to a contribution from the integration over the 
spheres and a surface integral contribution: 

Then substituting in Green's second identity gives us 

Finally by expanding in terms of the partial wave and its energy derivative, equations (14) 
and (15), and by using the fact that @ and 6 are real we obtain the result expressed in terms 
of an integral over the sphere and the potential parameters: 

xS: [St@ut~(Sr)@L,p(St) - St+ut~,(Sr)@L,,(Sr) - @ W I , ( S , ) @ ~ , I ( S J ]  G .  (28) 

The derivation of the other three terms in expression (18) is similar-one must simply 
incorporate the energy derivative of the partial wave. The results for all four terms are 
listed in the following section and may be used in conjunction with expression (18) to 
compute the optical matrix elements. The matrix elements of the velocity operator are as 
follows: 
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Equation ( 2 )  remains valid in the presence of non-local potentials. If these potentials are 
expressed as 11-dependent functions of r ,  the above velocity matrix elements continue to be 
valid. 

4. Band-structure calculation 

In our calculations we have used LMTO theory in the atomic-sphere approximation (ASA) [7, 
81. In this framework the matrix elements have been calculated using a fully self-consistent 
procedure. The self-consistency was imposed on total charge densities, the energies E,! and 
the potential parameters. Included in the calculation are the combined corrections terms and 
relativistic corrections with the exception of spin-orbit coupling. For FeSi we have used 
the CsCl structure with a diatomic basis of Fe at (0.0,O) and Si at @/2, a / 2 ,  a/2) .  The 
lattice constant is a = 2.717 A and the muffin-tin radius is 0.433Oa. In the atomic-sphere 
approximation for Si empty spheres have been introduced in order to obtain a satisfactory 
packing ratio for the crystal lattice. The cell of Si has the FCC structure with a basis 
composed of two silicon atoms respectively at (O,O, 0) and (u/4, u/4,  a/4)  and two empty 
spheres at (a /2 ,  a /&  a/2) and (-a/4, -a/4, -a/4). The lattice constant, a ,  is 5.429 A 
and the muffin-tin radius is 0.2165~.  In order to perform the calculation we have used a 
uniform mesh of 220 and 240 points, for FeSi and Si respectively in the irreducible wedge 
of the Brillouin zone. Figures 1 and 2 show the band structures and densities of states 
corresponding to FeSi and Si respectively. 
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The Imaginary Part of the Dielectric Function 
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Figure 3. The imaginq pm of the dielectric function calculated for FeSi. 
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Contribution of Matrix Elements, M(E) 

0 

Energy in BVS 
Figure 5. An estimate of the energy dependence of the conrribution of ihe matrix elements, 
M ( E ) ,  to the optical properties of FeSi. 

5. Integration in k-space 

In order to compute the imaginary part of the dielectric function (5) and the joint density of 
states (6) one must perform an integration over the Brillouin zone. Within the formalism of 
LMTO theory the tetrahedron method [lo, 1 I ]  is generally used. In this method the dielectric 
function is expressed as an integral over the constant-energy surface E&) - E , ( k )  = E :  

and the joint density of states is similarly defined by 

The eigenvalues and eigenvectors are then calculated on a mesh in the irreducible Brillouin 
zone. This zone is divided into tetrahedra of equal volume (although this is not a necessary 
condition), the mesh of k-points defining the corners of each tetrahedron. The interpolated 
function is continuous at the boundaries of the tetrahedra and the irreducible Brillouin zone 
is completely divided into tetrahedra. The result of the interpolation is that the integrand 
depends only on the comer energies for a given energy band and the volume of the tetrahedra 
but not on their shape. 

Lehmann and Taut [ I l l  have shown how a function of k such as the &character (see, 
for example, Skiver [SI), used to calculate density of states, or the matrix elements squared 
I( WCk I P I W v k  )Iz, used to calculate optical properties, may also be linearly interpolated 
within each tetrahedron. We have found that interpolating the rl-character produces no 
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The Imaginary Part of the Dielectric Function 
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Figure 6. The imaginary pan of the dielectric function calculated for Si. 
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Figure 6. The imaginary pan of the dielectric function calculated for Si. 

,O 

visible difference in the density of states compared to using an average value for the tl- 
character. However, for optical properties a small but visible improvement in the spectra 
is obtained by linearly interpolating the matrix elements squared as opposed to using their 
average value, 

6. Numerical results 

To demonstrate the validity of our method we have applied it for calculating the imaginary 
part of the dielectric function for FeSi and Si. Figures 3 and 4 show t z ( E )  and the 
corresponding joint density of states respectively for FeSi. The large resonance located 
at around 8 eV in the optical spectrum (figure 3) cannot be totally accounted for by the 
corresponding peak in the joint density of states (figure 4). In order to investigate this 
resonance further, we have crudely obtained the energy dependence of the contribution from 
the matrix elements, M ( E ) ,  by dividing the E Z ( E )  spectrum by that of the joint density of 
states, i.e. 

This rough approximation can, however, yield useful information and it may be seen from 
figure 5 that the matrix elements have a strong contribution in the region from 7 to 11 eV 
for FeSi. This contribution encourages transitions over this energy range and hence the 
resonance at 8 eV in the optical spectrum. Nevertheless it is not possible to make any more 
definite conclusions as to which interband transitions contribute significantly. 

The results for Si are shown in figure 6 the optical spectrum E ~ ( o )  and in figure 7 the 
joint density of states. We are satisfied that our optical spectrum for Si shows reasonable 
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Figure 7. The joint density of stales calculated for Si. 

agreement with other theoretical calculations [12] and experimental results [ 131 . At energies 
above 4.5 eV for Si the contribution from the matrix elements and the 1/E2-tem combine 
in principle to reduce the optical spectrum to zero at high energies. However, we can 
see from the optical spectrum of Si that this process does not work adequately and we 
are left with an unphysical ‘high-energy tail’. At this point it is useful to consider what 
effect this high-energy tail will have on the normal sum rules [15]. Indeed if we use 
the Thomas-ReicheKuhn sum rule to calculate the effective number of valence electrons, 
termed n,v(oo) where N is the atomic density: 

we find that the sum rule is violated at energies above -8.44 eV for FeSi and -9.3 eV for 
Si. The existence of these high-energy tails is not. however, unique to our calculations (see, 
for example, Del Sole and Girlanda 1121). Scissors operators may be used to adjust the 
spectra artificially for better agreement with experimental values; however, more rigorous 
theories must be developed in order to calculate the observed optical spectra. 

7. Concluding remarks 

We have shown in this paper how a new method may be used to calculate the optical 
properties of solids using a gauge-independent formalism for LMX) theory. The above 
theoretical expressions may be computed using output data from the LMTO band-structure 
package. The k-space integration is carried out using the tetrahedron method. This method 
is also suitable for Hamiltonians in which non-local potentials are included. The results 
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given here have been calculated for FeSi and for crystalline Si, in which empty spheres 
were employed. 
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Appendix 1 

The product of three spherical harmonics may be calculated from the Gaunt formula 

where the Clebsch-Gordan coefficients for the coupling of two angular momenta may be 
calculated using 

x(l3 - / I +  mi + v)!(l3 - 21 - m1.f  U)!]-' (A21 
and the summation over U assumes all non-negative factorial arguments. 
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